【资料图】
1、第二类换元积分法令t=√(x-1),则x=t^2+1,dx=2tdt原式=∫(t^2+1)/t*2tdt=2∫(t^2+1)dt=(2/3)*t^3+2t+C=(2/3)*(x-1)^(3/2)+2√(x-1)+C。
2、其中C是任意常数2、第一类换元积分法原式=∫(x-1+1)/√(x-1)dx=∫[√(x-1)+1/√(x-1)]d(x-1)=(2/3)*(x-1)^(3/2)+2√(x-1)+C,其中C是任意常数3、分部积分法原式=∫2xd[√(x-1)]=2x√(x-1)-∫2√(x-1)dx=2x√(x-1)-(4/3)*(x-1)^(3/2)+C,其中C是你任意常数。
本文到此分享完毕,希望对大家有所帮助。